24СʱÂÛÎ͍֯ÈÈÏß

                                                            ×Éѯµç»°

                                                            ÈÈÃűÏÉ裺ÍÁľ¹¤³ÌØ­¹¤³ÌÔì¼ÛØ­ÇÅÁº¹¤³ÌØ­¼ÆËã»úØ­javaØ­aspØ­»úеح»úеÊÖØ­¼Ð¾ßØ­µ¥Æ¬»úØ­¹¤³§¹©µçØ­²É¿ó¹¤³Ì
                                                            Äúµ±Ç°µÄλÖãºÂÛÎ͍֯ > ±ÏÒµÉè¼ÆÂÛÎÄ >
                                                            ¿ìËÙµ¼º½
                                                            ±ÏÒµÂÛÎ͍֯
                                                            ¹ØÓÚÎÒÃÇ
                                                            ÎÒÃÇÊÇÒ»¼ÒרҵÌṩ¸ßÖÊÁ¿´ú×ö±ÏÒµÉè¼ÆµÄÍøÕ¾¡£2002Äê³ÉÁ¢ÖÁ½ñΪÖÚ¶à¿Í»§Ìṩ´óÁ¿±ÏÒµÉè¼Æ¡¢ÂÛÎ͍ÖƵȷþÎñ£¬Ó®µÃÖÚ¶à¿Í»§ºÃÆÀ£¬ÒòΪרע£¬ËùÒÔרҵ¡£Ð´×÷ÀÏʦ´ó²¿·ÖÓÉÈ«¹ú211/958µÈ¸ßУµÄ²©Ê¿¼°Ë¶Ê¿ÉúÉè¼Æ£¬Ö´±Ê£¬Ä¿Ç°ÒÑΪ5000Óàλ¿Í»§½â¾öÁËÂÛÎÄд×÷µÄÄÑÌâ¡£ ±ü³ÐÒÔÓû§ÎªÖÐÐÄ£¬ÎªÓû§´´Ôì¼ÛÖµµÄÀíÄÎÒÕ¾ÓµÓÐÎÞ·ì¶Ô½ÓµÄÊÛºó·þÎñÌåϵ£¬´ú×ö±ÏÒµÉè¼ÆÍê³ÉºóÓÐרҵµÄÀÏʦ½øÐÐÒ»¶ÔÒ»ÐÞ¸ÄÓëÍêÉÆ£¬¶ÔÓдð±çÐèÇóµÄͬѧ½øÐÐÒ»¶ÔÒ»µÄ¸¨µ¼,ΪÄã˳Àû±ÏÒµ±£¼Ý»¤º½
                                                            ´ú×ö±ÏÒµÉè¼Æ
                                                            ³£¼ûÎÊÌâ

                                                            ¶à³ß¶È¾í»ýÉñ¾­ÍøÂçÔ¤¾¯ÏµÍ³µÄÑз¢

                                                            Ìí¼Óʱ¼ä£º2020/07/18 À´Ô´£ºÖйú¿ÆÑ§Ôº´óѧ ×÷ÕߣºËïöÎ
                                                            Èí¼þ²¿·Öͨ¹ýKeras ¿ò¼ÜÉú³Éµ×²ãÍøÂçÄ£ÐÍ£¬Ê¹Óà Java ¿ª·¢ÏµÍ³µÄ¸÷¸öÄ£¿é£¬²ÉÓÃǰºó¶Ë·ÖÀëµÄ¼Ü¹¹£¬ÊµÏÖÁËÓû§µÇ¼ºÍ¹ÜÀí¡¢É豸¹ÜÀí¡¢È¨ÏÞ¿ØÖÆ¡¢Êý¾ÝÊäÈë¡¢ÊÙÃü·ÖÎöºÍÔ¤¾¯µÈ¹¦ÄÜ¡£
                                                            ÒÔÏÂΪ±¾ÆªÂÛÎÄÕýÎÄ£º

                                                            Õª Òª

                                                            ¡¡¡¡Ëæ×Ź¤ÒµºÍ¿Æ¼¼µÄ¿ìËÙ·¢Õ¹£¬Êý¿Ø»ú´²µÄÖÇÄÜ»¯Ë®Æ½²»¶ÏÌá¸ß£¬É豸²¿¼þµÄ¹ÊÕÏÕï¶Ï¼¼ÊõÒѾ­Ç÷ÓÚ³ÉÊ죬µ«ÊǹÊÕÏÕï¶ÏÖ»ÄÜ×öµ½¶Ô²¿¼þµÄ¹ÊÕÏ·ÖÀ࣬²»ÄÜÖÇ ÄÜÔ¤¾¯¡£Òò´Ë£¬¹ö¶¯Öá³ÐµÄ¹ÊÕÏÔ¤¾¯ÏµÍ³Êܵ½´ó¼ÒµÄÇàíù£¬¸Ãϵͳ¾ßÓÐ״̬¼ì²â¡¢Ô¤Öª¹ÊÕÏÒÔ¼°ÌṩԤ¾¯½¨ÒéµÄÄÜÁ¦¡£µ«Ä¿Ç°µÄϵͳ´ó¶àͨ¹ýÖá³ÐµÄʧЧ»úÀíºÍ±¾ÉíµÄ·þÒÛÐÔÄÜÀ´¼ä½ÓµÄÌṩԤ¾¯£¬ÕâÖÖ·½Ê½²»¾ßÓкÜÇ¿µÄÖÇÄÜÐÔ£¬Òò´Ë±¾ÎÄͨ¹ýÉî¶Èѧϰ¼¼ÊõÀ´Ô¤²âÖá³ÐµÄÊ£ÓàÊÙÃü£¬Í¨¹ýÊÙÃüµÄ½á¹û¸ø³öÏàÓ¦µÄÔ¤¾¯´ëÊ©£¬½áºÏÈí¼þ¹¤³ÌÀíÂ۴Ò×ÓÚ²Ù×÷µÄÔ¤¾¯ÏµÍ³¡£

                                                            ¡¡¡¡Ê×ÏÈ£¬¶Ô¹ö¶¯Öá³ÐµÄ¾ßÌå½á¹¹½øÐзÖÎö£¬¸ø³öÁËÖá³ÐµÄÍË»¯ÀàÐÍ£»½éÉÜÖá³ÐÕñ¶¯²úÉúµÄÔ­Òò£¬Í¨¹ý¶ÔÖá³ÐÕñ¶¯ÆµÂʽøÐзÖÎö£¬¶Ô±È×ÔÉíÔËÐвúÉúÕñ¶¯ºÍÍË»¯Ôì³ÉÕñ¶¯µÄÇø±ð£¬ÎªÕñ¶¯ÐźſÉÓÃÓÚÔ¤²âÊÙÃüÌṩÀíÂÛÒÀ¾Ý£»×ܽá³öÖá³ÐÐÔÄܵÄÍË»¯¹æÂÉ£¬¸ø³öÖá³ÐÊ£ÓàÊÙÃüÔ¤²âºÍ¹ÊÕÏÔ¤¾¯µÄÁªÏµ¡£

                                                            ¡¡¡¡È»ºó£¬Õë¶Ô¹ö¶¯Öá³ÐÊ£ÓàÊÙÃüÄÑÔ¤²âµÄÇé¿ö£¬ÔÚ·ÖÎöÁËÖá³ÐԭʼÐźÅÌØÕ÷ÌáÈ¡À§ÄѵĻù´¡ÉÏ£¬Ìá³öÁ˽µÔë×Ô±àÂëÆ÷ÐźÅÔ¤´¦ÀíÒÔ¼°»ùÓÚ¶à³ß¶È¾í»ýÉñ¾­ÍøÂçµÄÖá³ÐÊ£ÓàÊÙÃüÔ¤²â·½Ê½¡£¸Ã·½·¨Ê×ÏÈʹÓýµÔë×Ô±àÂëÆ÷¶ÔÖá³ÐԭʼÕñ¶¯ÐźŽøÐбàÂ룬Ȼºó½«±àÂë½á¹ûÒÀ´Î¾­¹ýdz²ãÌØÕ÷Ìáȡģ¿é¡¢Éî²ãÌØÕ÷Ìáȡģ¿é¡¢Êý¾ÝÈÚºÏÄ£¿éºÍÊä³öÄ£¿éÕâËIJ¿·Ö½øÐд¦Àí£¬×îºóÊä³öÔ¤²âµÄÊ£ÓàÊÙÃü¡£Í¬Ê±Ìá³öÁËÒ»ÖÖÐÂÐ͵ĸĽø¾ù·½Îó²î×÷ÎªÍøÂçµÄËðʧº¯Êý£¬È¡µÃÁ˽ϺõÄЧ¹û¡£Í¨¹ý¶ÔÖá³ÐÊÙÃüÔ¤²âʵÑéµÄ²âÊÔÊý¾Ý½øÐÐÔ¤²â·ÖÎö£¬¸Ã·½·¨Äܹ»ÓÐЧµÄÔ¤²âÖá³ÐµÄÊ£ÓàÊÙÃü¡£

                                                            ¡¡¡¡×îºó£¬¶ÔÖá³Ð¹ÊÕÏÔ¤¾¯ÏµÍ³½øÐÐÁË×ÜÌ广»®£¬Í¨¹ýÉè¼ÆÈí¼þºÍÓ²¼þ¶ÔϵͳÌṩ·þÎñ¡£Ó²¼þ²¿·ÖѡȡÁËÐͺÅΪ LIS3DSH µÄ¼ÓËٶȼƲɼ¯Öá³ÐÕñ¶¯ÐźÅ£¬»º´æRedis Ä£ÄâÏûÏ¢¶ÓÁÐÒÔ¼° InfluxDB Êý¾Ý¿â¶ÔÕñ¶¯ÐźŽøÐг־û¯¡£Èí¼þ²¿·Öͨ¹ýKeras ¿ò¼ÜÉú³Éµ×²ãÍøÂçÄ£ÐÍ£¬Ê¹Óà Java ¿ª·¢ÏµÍ³µÄ¸÷¸öÄ£¿é£¬²ÉÓÃǰºó¶Ë·ÖÀëµÄ¼Ü¹¹£¬ÊµÏÖÁËÓû§µÇ¼ºÍ¹ÜÀí¡¢É豸¹ÜÀí¡¢È¨ÏÞ¿ØÖÆ¡¢Êý¾ÝÊäÈë¡¢ÊÙÃü·ÖÎöºÍÔ¤¾¯µÈ¹¦ÄÜ¡£

                                                            ¡¡¡¡¹Ø¼ü´Ê£º¶à³ß¶È¾í»ýÉñ¾­ÍøÂ磬 Ô¤´¦Àí£¬Ê£ÓàÊÙÃüÔ¤²â£¬Ô¤¾¯ÏµÍ³

                                                            ¶à³ß¶È¾í»ýÉñ¾­ÍøÂçÔ¤¾¯Ïµ

                                                            Abstract

                                                            ¡¡¡¡With the rapid development of industry and technology, machine tools are becoming more and more intelligent. The fault diagnosis technology of equipment components has matured, but fault diagnosis can only classify the faults of components, and cannot intelligently warn. The rolling bearing fault early warning system is favored by everyone. The system has the ability of status detection, predicting faults and providing early warning suggestions. However, most of the previous systems provide warning indirectly through the failure mechanism of the bearing and its service performance. Therefore, this paper uses deep learning technology to predict the remaining life of the bearing, gives early warning measures through the results of the life, and combines software engineering theory to build an easy-to-operate early warning system.

                                                            ¡¡¡¡First, the structure of the rolling bearing is analyzed, and the degradation type of the bearing is given. Introduce the causes of bearing vibration. By analyzing the vibration frequency of the bearing, compare the difference between the vibration caused by its own operation and the vibration caused by degradation, and provide a theoretical basis for the vibration signal to be used to predict the life. Summarize the degradation law of bearing, and give the relationship between bearing remaining life prediction and failure warning. At the same time, a new improved mean square error is proposed as the loss function of the network, and good results are achieved. Through predictive analysis of the test data of the bearing life prediction experiment, this method can effectively predict the remaining life of the bearing.

                                                            ¡¡¡¡Then, for the situation that the remaining life of rolling bearings is difficult to predict, based on the analysis of the characteristics of bearing original signal, it is difficult to extract the signal preprocessing of noise reduction autoencoder and the prediction method of remaining life of bearings based on multi-scale convolutional neural network. In this method, the original vibration acceleration signal is preprocessed by a noise reduction autoencoder, and then the pre-processing result is used as input, and then processed through four parts: shallow feature extraction module, deep

                                                            ¡¡¡¡feature extraction module, data fusion module, and output module. Finally, the predicted remaining life is output. At the same time, a new type of improved mean square error is proposed as the loss function of the network, which has achieved good results. This method can effectively predict the remaining life of the bearing by predicting and analyzing the test data of the bearing life prediction experiment.

                                                            ¡¡¡¡Finally, the overall planning of the bearing failure early warning system was carried out, and the system was provided with services by designing software and hardware. The hardware part selects the accelerometer model LIS3DSH to collect bearing vibration signals, caches the Redis analog message queue and the InfluxDB database to persist the vibration signals. The software part generates the underlying network model through the Keras framework, uses each module of the Java development system, and adopts a front-end and back-end separated architecture to realize user login and management, device management, permission control, data input, life analysis, and early warning.

                                                            ¡¡¡¡Key words: Multi-scale convolutional neural network, Preprocessing, Remaining life prediction, Early warning system

                                                            Ŀ ¼

                                                            ¡¡¡¡µÚ1Õ Ð÷ÂÛ

                                                            ¡¡¡¡1.1 Ñ¡ÌâµÄ±³¾°ºÍÒâÒå

                                                            ¡¡¡¡½üÄêÀ´ÎÒ¹ú¿Æ¼¼²»¶Ï½ø²½£¬¹¤ÒµË®Æ½²»¶ÏÌá¸ß£¬Êý¿Ø»ú´²µÄ¼¯³É¶ÈÒ²Ô½À´Ô½ºÃ£¬Éú²úÖÆÔìµÄ¹ý³ÌÒ²¸ü¼ÓÇ÷ÓÚ×Ô¶¯»¯£¬µ«ÎªÁËÂú×㹤ҵÉú²úµÄÒªÇ󣬻ú´²É豸ÐèÒª²»Í£µÄÔË×÷£¬È»¶øÉ豸³¤Ê±¼ä¹¤×÷¶¨»áÔì³ÉËðÉËÉõÖÁ¹ÊÕÏ¡£»úеÉ豸Ë𻵺óÈôÎÞ¼´Ê±ÐÞÀí»òÕ߸üÌæ£¬½«»áÒý·¢Õû¸ö»úеÉ豸ϵͳµÄÁ¬Ëø·´Ó¦£¬ÇáÔò»áʹ¹¤³Ì´¦ÓÚÍ£Ö͵Ä״̬£¬¸øÊý¿ØÆóÒµ´øÀ´±È½Ï´óµÄ¾­¼ÃÎÊÌâ£¬ÖØÔò»áʹÊý¿Ø»ú´²É豸²»ÔÙÍêÕû£¬ÉõÖÁµ¼Ö²Ù×÷ÈËÔ±ÉËÍö¡£Òò´Ë¶Ô»úеÉ豸´î½¨Ô¤¾¯ÏµÍ³£¬²»µ«¿ÉÒÔÌáǰ¸ÐÖª¹ÊÕϵķ¢Éú£¬±ÜÃâÔì³ÉÉ豸¹ÊÕÏÒý·¢µÄһϵÁÐÎÊÌ⣬¶øÇÒ¿ÉÒÔʹ»úеÉ豸±äµÃ¸ü¼ÓÖÇÄÜ¡£

                                                            ¡¡¡¡¹ö¶¯Öá³Ð×÷ΪÊý¿Ø»ú´²É豸ÖÐ×îÖØÒªµÄÁã¼þÖ®Ò»£¬±»³ÆÎª"¹¤ÒµµÄ¹Ø½Ú"Æðµ½¹ö¶¯ºÍ´«µ¼Á¦ÒÔ¼°¸ºÔصÄ×÷Óã¨Íõº£Áú£¬2019£©¡£Í¨³£Êý¿Ø»ú´²µÄ»úеÉ豸±È½ÏÅÓ´ó£¬É豸µÄ¸÷¸öÄ£¿é¶¼¿ÉÓõ½Öá³Ð£¬Òò´Ëÿ¸öÖá³ÐµÄÔËÐÐѹÁ¦²»¾¡Ïàͬ£¬ÆäÊÙÃüµÄʱ³¤Ò²±È½ÏÀëÉ¢£¬Èô°´ÕÕ³ö³§ËµÃ÷¶¨Ê±¶¨Á¿µÄ¶ÔÒ»²¿·ÖÖá³Ð½øÐÐάÐ޺͸ü»»£¬Ò»·½Ãæ»á³öÏÖ¶Ô´óÁ¿½¡¿µÖá³Ðά»¤µÄÏÖÏó£¬Ôì³É²»±ØÒªµÄÀË·Ñ£¬ÁíÒ»·½Ãæ¿ÉÄÜ»á³öÏÖһЩË𻵵ÄÖá³ÐÈÔÈ»ÔÚÔËתµÄÏÖÏó£¬Ôì³ÉÊý¿ØÏµÍ³Ì±»¾£¬³öÏÖ¾­¼ÃËðʧ¡£

                                                            ¡¡¡¡Òò´Ë¸ü¼ÓÈËÐÔ»¯¡¢ÖÇÄÜ»¯µÄÖá³Ð¹ÊÕÏÔ¤¾¯ÏµÍ³µÄÉè¼ÆÓëʵÏÖÆÈÔÚü½Þ£¬Ö»ÓÐÖá³Ð¹ÊÕÏÔ¤¾¯ÏµÍ³¿ÉÒÔ¼°Ê±¼à¿ØÃ¿¸öÖá³ÐµÄÔËÐÐ״̬£¬Ä£ÄâÖá³ÐµÄÔËÐÐÇ÷ÊÆ£¬ÌáÔç¸ÐÖªÖá³ÐµÄÊ£ÓàÊÙÃü£¬²ÅÄܸù¾ÝÊ£ÓàÊÙÃü¾«×¼Ìæ»»Ë𻵱ßÔµµÄÖá³Ð£¬ÕâÎÞÂÛÊǶԻúеÉ豸µÄºÏÀíά»¤£¬»¹ÊÇÌá¸ß»ú´²¹¤³§Éú²úµÄ°²È«ÐԺ;­¼ÃÐÔ¶¼¾ßÓзdz£ÖØ´óµÄÒâÒå¡£Òò´ËÔ½À´Ô½¶àµÄ¹ú¼ÒºÍµØÇøµÄ¿ÆÑÐÈËÔ±°ÑÖá³ÐµÄË𻵼à²âºÍÖÇÄÜÔ¤¾¯×÷ΪÑо¿¿ÎÌâ¡£

                                                            ¡¡¡¡Ä¿Ç°£¬È˹¤ÖÇÄÜ·ÉËÙ·¢Õ¹£¬ÏÖ½×¶ÎÔËÓÃÈ˹¤ÖÇÄܵÈÊֶοªÕ¹ÁËÖá³ÐµÄ´óÁ¿¹ÊÕϼì²âºÍÕï¶ÏµÄ¹¤×÷£¬¸Ã¹¤×÷ͨ³£ÊǶÔÖá³Ð³öÏÖ¹ÊÕϺó½øÐйÊÕÏÔ­Òò·ÖÎöºÍ¹ÊÕÏλÖö¨Î»£¬Æä¾ßÓÐÖͺóÐÔ£¬È»¶ø¶ÔÓÚ³¬Ç°Ô¤¾¯µÄÑо¿£¬¹úÄÚÍâµÄ³É¹û²»¾¡ÈçÈËÒ⣬Òò´Ë±¾ÎÄÖØµãÌÖÂÛÊý¿Ø»ú´²¹ö¶¯Öá³Ð¹ÊÕÏÔ¤¾¯¼¼Êõ¡£ÒªÏëÔÚÖá³ÐûÓгöÏÖ¹ÊÕϵÄǰÌáÏ£¬½øÐÐÌáǰԤ¾¯£¬ÐèÒª¼ÆËã³öÖá³ÐµÄÊ£ÓàÊÙÃü£¨Áº¾ºÖ®£¬2019£©£¬Òò´ËÔËÓÃÈ˹¤ÖÇÄÜÉî¶ÈѧϰµÈÊֶζÔÖá³ÐµÄÊ£ÓàÊÙÃü½øÐÐÔ¤²âÊDZ¾ÎÄÑо¿µÄÖ÷ÒªÄÚÈÝ¡£

                                                            ¡¡¡¡ÔÚ¹ú¼Ò¹¤ÒµÖÆÔìÖØ´ó¿ÆÑÐרÏîÖжà´ÎÉèÖÃÁË"ÖØ´ó²úÆ·ºÍÖØ´óÉ豸ÊÙÃüÓëÔ¤²â¼¼Êõ"µÄÑо¿×¨Ì⣬¶ÔÖá³ÐÊ£ÓàÊÙÃüÔ¤²â½øÐÐÑо¿£¬²»µ«ÏàÓ¦Á˹ú¼ÒµÄºÅÕÙ£¬¶øÇҿɶԻúеÉ豸¿ÉÄܳöÏֵĹÊÕϽøÐÐÌáǰԤ¾¯£¬Îª½ÓÏÂÀ´µÄÏÖ´ú»¯Î¬ÐÞÌṩ±£ÕÏ¡£

                                                            ¡¡¡¡×ÛÉÏËùÊö£¬Í¨¹ý¶àÖÖÊÖ¶ÎÔ¤²â¹ö¶¯Öá³ÐµÄÊ£ÓàÊÙÃü£¬¸ù¾ÝÊ£ÓàÊÙÃü½á¹û½øÐÐÔ¤¾¯£¬¶ÔÖá³Ð½øÐÐÏàÓ¦µÄά»¤ºÍ±£Ñø£¬¿É±£ÕÏÊý¿Ø»ú´²¿ÉÒÔ³¤Ê±¼ä½¡¿µÔËÐС£Òò´Ëͨ¹ý¸÷ÖÖ¼¼Êõ¶ÔÖá³Ð½øÐйÊÕÏÔ¤¾¯£¬Éè¼ÆÓëʵÏÖÏà¹ØÏµÍ³ÊǷdz£ÓÐÒâÒåµÄ¹¤×÷¡£

                                                            ¡¡¡¡1.2 ¹úÄÚÍâÏà¹ØÁìÓòµÄÑо¿ÏÖ×´

                                                            ¡¡¡¡½üÄêÀ´Ô½À´Ô½¶àµÄ¸ßУºÍ¿ÆÑлú¹¹Ñ§Õß¿ªÕ¹Öá³ÐÔ¤¾¯¼¼ÊõµÄÑо¿£¬Í¨³£À´ËµÖá³ÐÔ¤¾¯Ö÷ÒªÐèÒª¾­¹ýÒÔϲ½Ö裺Öá³ÐÐźżà²â¡¢Ê£ÓàÊÙÃüÔ¤²â¡¢¹ÊÕÏ·ÖÎöÒÔ¼°Î¬ÐÞ²ßÂÔ¡£±¾Õ½«½éÉÜÖá³ÐÐźżì²â¼¼ÊõÒÔ¼°Ê£ÓàÊÙÃüÔ¤²â¼¼ÊõµÄÑо¿ÏÖ×´¡£

                                                            ¡¡¡¡1.2.1 Öá³ÐÐźżà²â¼¼Êõ

                                                            ¡¡¡¡Èç½ñÖá³ÐµÄ¼à²â¼¼Êõ·¢Õ¹Ñ¸ËÙ£¬ÏÖÓеĹúÄÚÍâÖá³Ð¼à²âϵͳͨ³£Ê¹Óò»Í¬µÄ´«¸ÐÆ÷²É¼¯Öá³ÐÔËÐÐʱµÄÕñ·ù¡¢×ªËÙ¡¢Î¶È¡¢ÏàÓ¦²¿¼þµÄµçÁ÷ºÍµçѹÐÅÏ¢ÒÔ¼°Õñ¶¯¼ÓËÙ¶ÈÐźÅ£¬Í¨¹ý¶Ô´«¸ÐÆ÷²É¼¯µÄÐźŽøÐзÖÎö£¬Ä£ÄâÖá³ÐµÄ¹¤×÷ºÍÍË»¯×´Ì¬£¬À´ÊµÏÖ¶ÔÖá³ÐµÄ½¡¿µ¹ÜÀíºÍÊÙÃüÔ¤²â¡£Ëæ×ſƼ¼µÄ²»¶Ï½ø²½ÒÔ¼°¹¤ÒµÖÇÄÜÖÆÔì×Ô¶¯»°µÄ²»¶Ï½ø²½£¬ÐźŲɼ¯¼¼ÊõÒ²µÃµ½·ÉËÙ·¢Õ¹¡£ÀýÈ磺¹úÍâÎ÷´¢´óѧ£¨2014£©ÎªÁ˲ßÂÔÖá³ÐÕñ¶¯ÐźźÍÖá³Ð¹ÊÕÏÊý¾Ý£¬Ê¹ÓÃÁ˲»Í¬ÂíÁ¦µÄµç»ú½øÐÐÊÔÑ飬²¢ÔÚ¿¿½üºÍÔ¶Àëµç»úÖá³ÐµÄλÖ÷ÅÖüÓËٶȼÆÀ´»ñÈ¡Õñ¶¯ÐÅÏ¢£»¹úÄÚ¹þ¶û±õ¹¤Òµ´óѧѧÕßÒó±ó£¨2019£©Ìá³öÁËÒ»ÖÖ»ùÓÚ¼¯³ÉÉù±íÃæ²¨´«¸ÐÆ÷µÄ¹ö¶¯Öá³Ð״̬¼à²âϵͳ£¬¸Ãϵͳͨ¹ý½«Éù±íÃæ²¨Æ÷¼þ¼¯³ÉÓÚÖá³Ð¶ËÃæ£¬Í¨¹ýÌìÏßʵÏÖ SAW ´«¸ÐÆ÷ÐźŵÄÎÞÏß´«Ê䣬ΪÖá³Ð״̬¼à²âµÄÒ»Ì廯ºÍÖÇÄÜ»¯ÌṩÁËеÄ˼·£»Î÷°²½»Í¨´óѧת×ÓÖá³ÐϵͳʵÑéÊÒ¿ª·¢ÁËÒ»ÖÖÐÂÐ͵Ĺö¶¯Öá³Ð¼ÓËÙÊÙÃų̈£¨À×Ñǹú£¬2019£©£¬¸Ãƽ̨Óɽ»Á÷µç¶¯»ú¡¢µç¶¯»úתËÙ¿ØÖÆÆ÷¡¢×ªÖá¡¢Ö§³ÅÖá³Ð¡¢ÒºÑ¹¼ÓÔØÏµÍ³ºÍ²âÊÔÖá³ÐµÈ²¿¼þ×é³É£¬¿ÉÒÔ»ñÈ¡Öá³ÐÈ«ÊÙÃüÖÜÆÚµÄÕñ¶¯¡¢Î¶ÈÊý¾Ý¡£

                                                            ¡¡¡¡1.2.2 Ê£ÓàÊÙÃüÔ¤²â¼¼Êõ

                                                            ¡¡¡¡¶àÄê֮ǰ»ú´²¹ÊÕÏÔ¤¾¯´¦ÓÚÈ˹¤ÊÖ¶¯×´Ì¬£¬Í¨³£ÐèÒª¼¼Êõ¹¤È˹۲ìÕû¸öÉ豸µÄÔËÐÐ״̬£¬¸ù¾Ý¾­Ñé·ÖÎö²¿¼þµÄÔË×÷Çé¿ö£¬ÒÀ¿¿³£Ê¶À´½øÐÐÈËΪԤ¾¯£¬µ«ÕâÑùºÄʱºÄÁ¦£¬Ëæ»úÐԽϸß¡£¶øÈç½ñÈ˹¤ÖÇÄÜѸÃÍ·¢Õ¹£¬Ô¤¾¯¼¼Êõ²»¶Ïת±ä£¬Ô¤¾¯×ªÎªÒÀ¿¿×Ô¶¯»¯Ô¤²âÊ£ÓàÊÙÃüÀ´½øÐУ¬Òò´ËÊ£ÓàÊÙÃüÔ¤²â¼¼Êõ³ÉΪ¹ÊÕÏÔ¤¾¯µÄÖØÖÐÖ®ÖØ£¬Ö»ÓÐ׼ȷµÄÔ¤²âÊÙÃü£¬²ÅÄÜ×öµ½Ìáǰ¸ÐÖª¡¢ÌáǰԤ¾¯¡£Ä¿Ç°¹úÄÚÍâÑо¿±íÃ÷£¬¶ÔÖá³ÐÊ£ÓàÊÙÃüÔ¤²âÖ÷ÒªÓÐ 3 ÖÖ·½Ê½£º»ùÓÚÎïÀí״̬ģÐ͵ÄÊÙÃüÔ¤²â·½Ê½¡¢»ùÓÚÉî¶ÈѧϰµÄÊÙÃüÔ¤²â·½Ê½ºÍ»ùÓÚ»úÆ÷ѧϰµÄÊÙÃüÔ¤²â·½Ê½¡£

                                                            ¡¡¡¡£¨1£© »ùÓÚÎïÀí״̬ģÐ͵ÄÊ£ÓàÊÙÃüÔ¤²â¼¼Êõ

                                                            ¡¡¡¡»ùÓÚÎïÀí״̬ģÐ͵ĹÊÕÏÔ¤²â·½·¨ÊÇͨ¹ý»ñµÃÁ㲿¼þ׼ȷµÄÊýѧÍË»¯Ä£ÐÍ£¬Í¨¹ýÐźŵÄÀúÊ·Êý¾ÝÀ´¼ÆËãÏà¹ØÁã¼þµÄÔËÐÐ״̬£¬½¨Á¢ÒÔÎïÀíÄ£ÐÍΪ»ù´¡µÄÊ£ÓàÊÙÃüÔ¤²â·½Ê½£¬Áã¼þµÄÊ£ÓàÊÙÃüºÍÎïÀíÄ£Ð͵IJÎÊý½ôÃÜÁªÏµ£¬Ä£Ðͽ¨Á¢·½Ê½ºÍÄ£Ð͵Ľ¡×³ÐÔ¾ö¶¨Ô¤²â½á¹ûµÄ׼ȷÂÊ¡£Ä¿Ç°ÍõºãѧÕߣ¨2015£©Í¨¹ýÉ豸µÄÍË»¯Ö¸±êѵÁ·ºÏÊʵĻҶÈÄ£ÐÍ£¬Í¨¹ý»Ò¶ÈÄ£ÐÍÔ¤²âÉ豸µÄÍË»¯Ç÷ÊÆ½ø¶øÔ¤²â×îÖÕµÄÊ£ÓàÊÙÃü£»ÕÅÎĺÀ£¨2019£©Ìá³öÁËÒ»ÖÖ»ùÓÚŷʽ¾àÀëÓë»ÒɫԤ²âÄ£Ð͵Ļú´²Ö÷ÖáÊ£ÓàÊÙÃüÔ¤²â·½·¨£¬¸Ã·½·¨²ÉÓÃ×î´óìØËã·¨Çó³öÕñ¶¯ÐźŵÄ×î´óìØ¸ÅÂÊÃܶȷֲ¼£¬ÔÙÇó³ö¸÷¸ö¸ÅÂÊÃܶȷֲ¼Óë³õʼ¸ÅÂÊÃܶȷֲ¼Ö®¼äµÄŷʽ¾àÀ룬×îºóͨ¹ý¸ø¶¨µÄãÐÖµºÍŷʽ¾àÀëÀ´ÑµÁ·»Ò¶ÈÄ£ÐÍ£¬´Ó¶øÔ¤²â³öÆä´ïµ½¸ø¶¨ãÐֵʱËùÐèÒªµÄʱ¼ä£¬Ò²¼´ÊÇÖ÷ÖáÊ£ÓàʹÓÃÊÙÃü¡£

                                                            ¡¡¡¡£¨2£© »ùÓÚ»úÆ÷ѧϰµÄÊ£ÓàÊÙÃüÔ¤²â·½Ê½

                                                            ¡¡¡¡»úÆ÷ѧϰ×÷ΪһÖÖÉæ¼°¶àÖÖ¿ÆÑ§µÄ½»²æÑ§¿Æ£¬×Ôµ®ÉúÒÔÀ´¾ÍÓ¦ÓÃÓÚ¶àÖÖÁìÓò£¬¶øÈç½ñÔ½À´Ô½¶àµÄѧÕß²ÉÓûúÆ÷ѧϰµÄ·½Ê½¶ÔÖá³ÐµÄÊ£ÓàÊÙÃü½øÐÐÔ¤²â£¬ÆäÖÐÁõ²¨¡¢Áõ²Åѧ£¨2019£©²ÉÓÃÁ¬ÐøÐÍ HMM ºÍ PSO-SVM µÈ»úÆ÷ѧϰ¼¼Êõ¶ÔÖá³ÐÊ£ÓàÊÙÃü½øÐÐÔ¤²â£¬Ê×ÏȶÔÖá³ÐµÄÈ«ÊÙÃüÖÜÆÚµÄÕñ¶¯ÐźÅÌáȡͳ¼ÆÌØÕ÷£¬È»ºóͨ¹ýÁ¬ÐøµÄÒþÂí¶û¿É·òÄ£Ðͽ«Öá³ÐµÄÈ«ÊÙÃüÖÜÆÚ·Ö¿ª£¬È»ºó·Ö±ðͳ¼Æ²»Í¬Ê±¼ä¶ÎµÄÖá³ÐÐźŵÄÌØÕ÷£¬×îºóͨ¹ý PSO-SVM ¶Ô¶à¸öÌØÕ÷½øÐÐѵÁ·²¢Ô¤²â×îÖÕ½á¹û£¬¸Ã·½Ê½È¡µÃÁ˱ȽϺõÄЧ¹û£»À×Ñǹú£¨2019£©µÈѧÕßͨ¹ý²ÉÓÃÁ£×ÓÂ˲¨µÄ·½Ê½Ô¤²âÖá³ÐµÄÊ£ÓàÊÙÃü£¬ÆäÖÐÄ£Ð͵ÄÊäÈëÌØÕ÷´ÓԭʼÊý¾ÝÖÐÌáÈ¡£¬²¢¾­¹ýÁËÌØÕ÷ÈںϵIJÙ×÷£»Âíº£Áú£¨2019£©¶Ô²É¼¯µÄÕñ¶¯¼ÓËÙ¶ÈÐźÅÌáÈ¡·åÖµ¡¢Ð¡²¨ìصÈÌØÕ÷£¬²¢Í¨¹ý PCA½µÎ¬ÈںϺó½øÐÐ SVM Ä£ÐÍÔ¤²â£¬×îÖյõ½Öá³ÐµÄÊ£ÓàÊÙÃü¡£

                                                            ¡¡¡¡£¨3£© »ùÓÚÉî¶ÈѧϰµÄÖá³ÐÊ£ÓàÊÙÃüÔ¤²â·½Ê½

                                                            ¡¡¡¡Èç½ñ¼ÆËã»úÓ²¼þ×ÊÔ´Ô½À´Ô½·á¸»£¬Êý¾ÝÑù±¾Ô½À´Ô½¶à£¬Òò´ËÉî¶ÈѧϰµÄÓ¦ÓÃÔ½À´Ô½¹ã·º£¬¶øÈç½ñÔ½À´Ô½¶àµÄ¹úÄÚÍâѧÕß²ÉÓÃÉî¶ÈѧϰµÄ·½Ê½À´½øÐÐÊ£ÓàÊÙÃüÔ¤²â¡£ÀýÈçÇñÏþ÷£¨2019£©µÈÈ˶Բɼ¯µÄԭʼÕñ¶¯¼ÓËÙ¶ÈÐźŽøÐд¦Àí£¬Ìáȡͳ ¼ÆÌØÕ÷£¬¶ÔÌØÕ÷ÇóÏà¹ØÏµÊý£¬½øÐÐÌØÕ÷¼òÔ¼ºóÀûÓà BP Éñ¾­ÍøÂçÀ´½øÐÐÊÙÃüÔ¤²â¡£

                                                            ¡¡¡¡1.3 Ñо¿ÄÚÈݺÍ×éÖ¯½á¹¹

                                                            ¡¡¡¡±¾ÎÄÒÔÊý¿Ø»ú´²¹ö¶¯Öá³Ð¹ÊÕÏÔ¤¾¯ÎªÄ¿±ê£¬ÀûÓÃÓ²¼þ»ñÈ¡Öá³ÐµÄÈ«ÊÙÃüÖÜÆÚµÄÕñ¶¯ÐźÅ£¬»ùÓÚÉî¶ÈѧϰµÈ·½Ê½À´½øÐÐÊ£ÓàÊÙÃüÔ¤²â£¬×îºóͨ¹ý¶ÔÖá³ÐÌá³öÏàÓ¦µÄάÐÞ²ßÂÔ£¬ÒÔ´ïµ½¹¤ÒµÉú²úÖÐ×Ô¶¯»¯ÖÇÄÜÔ¤¾¯µÄ×÷Óã¬ÎªÁ˵õ½¸üºÃµÄÈË»ú½»»¥ÐÔ£¬±¾ÎÄÀûÓÃÍøÒ³Éè¼ÆµÄ˼·¶Ôϵͳ½øÐÐÁËÉè¼ÆÓëʵÏÖ£¬Âú×ãÁËϵͳ²Ù×÷¼òµ¥¡¢ÈÝÒ×ÉÏÊÖµÄÒªÇó¡£±¾ÎĵÄÖ÷ÒªÄÚÈÝÈçÏ£º

                                                            ¡¡¡¡µÚÒ»Õ½éÉÜÁË¿ÎÌâµÄÏà¹Ø±³¾°ÒÔ¼°Ñо¿µÄÒâÒ壬²ûÊöÁ˹úÄÚÍâÖá³ÐÐźżì²â¼¼ÊõÒÔ¼°Öá³ÐÊ£ÓàÊÙÃüÔ¤²â¼¼ÊõµÄ·¢Õ¹×´¿ö£¬×îºó½éÉÜÁ˱¾ÎÄ×éÖ¯½á¹¹¡£

                                                            ¡¡¡¡µÚ¶þÕ½éÉÜÁËÖá³ÐµÄÍË»¯»úÀíºÍÊ£ÓàÊÙÃü¡£´Ó¹ö¶¯Öá³ÐµÄ¾ßÌå½á¹¹ÈëÊÖ£¬±È½ÏÁËÖá³ÐµÄÍË»¯ÀàÐÍ£¬Í¬Ê±¸ø³öÁËÖá³ÐÕñ¶¯²úÉúµÄÔ­Òò£¬Ïêϸ·ÖÎöÁËÖá³ÐÕñ¶¯µÄƵÂÊ£¬µÃ³öÁËÕñ¶¯ÐźſÉÓÃÓÚÔ¤²âÊÙÃüµÄ½áÂÛ£¬×îºóͨ¹ý½áºÏÖá³ÐÐÔÄÜÍË»¯µÄ¹æÂÉ£¬¸ø³öÁËÊ£ÓàÊÙÃüÔ¤²âµÄ¶¨ÒåºÍÊ£ÓàÊÙÃü¶ÔÓÚ¹ÊÕÏÔ¤¾¯µÄÖØÒªÐÔ¡£

                                                            ¡¡¡¡µÚÈýÕ½éÉÜÁË´«Í³µÄ¾í»ýÉñ¾­ÍøÂç¡£Ê×ÏȶԱÈÁËÖ§³ÖÏòÁ¿»Ø¹é¡¢Ñ­»·Éñ¾­ÍøÂçºÍ¾í»ýÉñ¾­ÍøÂçÖ®¼äµÄÇø±ð£¬·ÖÎö¾í»ýÉñ¾­ÍøÂçÄ£ÐÍÔÚ¹ÊÕÏÔ¤¾¯ÖеÄÓÅÊÆ£¬Ïêϸ½éÉÜ´«Í³¾í»ýÉñ¾­ÍøÂçÄ£Ð͵ľí»ý²Ù×÷¡¢³Ø»¯²Ù×÷ºÍ¼¤»î²Ù×÷£¬ÒÔ¼°Ä£Ð͵ÄѵÁ··½Ê½ºÍ·ÀÖ¹¹ýÄâºÏµÄ¼¼Êõ£¬Îª½éÉÜÏÂÒ»Õ¶à³ß¶È¾í»ýÉñ¾­ÍøÂç×öÆÌµæ¡£

                                                            ¡¡¡¡µÚËÄÕÂÊDZ¾ÎĵĺËÐÄÄÚÈÝ£¬½éÉÜÁËÐźÅÔ¤´¦Àí·½Ê½ÒÔ¼°¶à³ß¶È¾í»ýÉñ¾­ÍøÂçÄ£ÐÍ¡£Ê×ÏÈÔÚ×Ô±àÂëÆ÷µÄ»ù´¡ÉÏÌá³öÁ˽µÔë×Ô±àÂëÆ÷£¬·ÖÎö½µÔë×Ô±àÂëÆ÷Ó¦ÓÃÓÚÐźÅÔ¤´¦ÀíÖеÄÓÅÊÆ£¬½Ó×ÅÌá³öÁ˾ßÓд´ÐµĶà³ß¶È¾í»ýÉñ¾­ÍøÂçÄ£ÐÍ£¬Ïêϸ½éÉܸÃÄ£ÐÍÖеÄdz²ãÌØÕ÷Ìáȡģ¿é¡¢Éî²ãÌØÕ÷Ìáȡģ¿é¡¢Êý¾ÝÈÚºÏÄ£¿é£¬²¢Õë¶ÔÔ¤²âÊÙÃüµÄÎÊÌâ¸ø³öÁËÒ»ÖÖ¸üºÃµÄËðʧº¯Êý£¬×îºóͨ¹ýʵÑé¶Ô¶à³ß¶È¾í»ýÉñ¾­ÍøÂçÄ£ÐͽøÐÐÑéÖ¤¡£

                                                            ¡¡¡¡µÚÎåÕ½éÉÜÁËÖá³Ð¹ÊÕÏÔ¤¾¯ÏµÍ³µÄÉè¼ÆÓëʵÏÖ·½Ê½¡£¸ø³öÁ˸ÃϵͳµÄ×ÜÌ广»®£¬¸ù¾Ý¹æ»®µÄÒªÇó¸ø³öÁËÓ²¼þʹÓ÷½Ê½²¢Éè¼ÆÁËÈí¼þ³ÌÐò£¬ÊÂʵ֤Ã÷¸Ãϵͳ¿ÉÕë¶ÔÖá³ÐµÄ¾ßÌåÇé¿ö¸ø³öÏàÓ¦µÄÔ¤¾¯´ëÊ©£¬¿ÉÌá¸ß¹¤×÷ÈËÔ±µÄ¹¤×÷ЧÂÊ¡£

                                                            ¡¡¡¡1.4 ±¾ÕÂС½á

                                                            ¡¡¡¡±¾ÕÂÖ÷Òª½éÉÜÁËÖá³Ð¹ÊÕÏÔ¤¾¯µÄÒâÒ壬ÒÔ¼°Ê£ÓàÊÙÃüÔ¤²âÔÚÖá³ÐÔ¤¾¯ÖеÄÖØÒª×÷Óã¬Í¬Ê±½éÉÜÁË»úÆ÷ѧϰºÍÉî¶ÈѧϰÉñ¾­ÍøÂçµÈÏà¹Ø¸ÅÄ×ܽáÁËĿǰ¹úÄÚÍâÖá³ÐÐźżì²â¼¼ÊõºÍÖá³ÐÊ£ÓàÊÙÃüÔ¤²â¼¼ÊõµÄÑо¿³É¹ûÒÔ¼°·¢Õ¹Ç°¾°£¬Ã÷È·ÁË ±¾ÎĵÄÑо¿µÄÄ¿±êºÍ·½Ïò£¬×îºó£¬Ìá³öÁ˱¾ÎĵÄÑо¿ÄÚÈݺͽâ¾öµÄÖ÷ÒªÎÊÌâ¡£









                                                            ¡¡¡¡µÚ 2 Õ Öá³ÐÍË»¯»úÀíºÍÊ£ÓàÊÙÃü½éÉÜ
                                                            ¡¡¡¡2.1 ÒýÑÔ
                                                            ¡¡¡¡2.2 ¹ö¶¯Öá³Ð½á¹¹
                                                            ¡¡¡¡2.3 ¹ö¶¯Öá³ÐÍË»¯ÀàÐÍ
                                                            ¡¡¡¡2.4 ¹ö¶¯Öá³ÐµÄÕñ¶¯·ÖÎö
                                                            ¡¡¡¡2.4.1 ¹ö¶¯Öá³ÐÕñ¶¯Ô­Òò
                                                            ¡¡¡¡2.4.2 ¹ö¶¯Öá³ÐÕñ¶¯ÆµÂÊ·ÖÎö
                                                            ¡¡¡¡2.5 ¹ö¶¯Öá³ÐÊ£ÓàÊÙÃü½éÉÜ
                                                            ¡¡¡¡2.5.1 ¹ö¶¯Öá³Ð¹ÊÕÏÂʱ仯¹æÂÉ
                                                            ¡¡¡¡2.5.2 ¹ö¶¯Öá³ÐÊ£ÓàÊÙÃüÔ¤²â¶¨Òå
                                                            ¡¡¡¡2.7 ±¾ÕÂС½á

                                                            ¡¡¡¡µÚ 3 Õ ¾í»ýÉñ¾­ÍøÂç
                                                            ¡¡¡¡3.1 ÒýÑÔ
                                                            ¡¡¡¡3.2 Ä£ÐͶԱÈ
                                                            ¡¡¡¡3.2 ´«Í³¾í»ýÉñ¾­ÍøÂç½á¹¹
                                                            ¡¡¡¡3.2.1 ¾í»ý²ã
                                                            ¡¡¡¡3.2.2 ¼¤»î²ã
                                                            ¡¡¡¡3.2.3 ³Ø»¯²ã
                                                            ¡¡¡¡3.2.4 È«Á¬½Ó²ã
                                                            ¡¡¡¡3.3 ·ÀÖ¹¹ýÄâºÏ¼¼Êõ
                                                            ¡¡¡¡3.3.1 ÕýÔò»¯¼¼Êõ
                                                            ¡¡¡¡3.3.2 Dropout ¼¼Êõ
                                                            ¡¡¡¡3.4 ±¾ÕÂС½á

                                                            ¡¡¡¡µÚ 4 Õ »ùÓÚ¶à³ß¶È¾í»ýÉñ¾­ÍøÂçµÄÖá³ÐÊ£ÓàÊÙÃüÑо¿
                                                            ¡¡¡¡4.1 ÒýÑÔ
                                                            ¡¡¡¡4.2 ÐźÅÔ¤´¦Àí
                                                            ¡¡¡¡4.3 ¶à³ß¶È¾í»ýÉñ¾­ÍøÂçÄ£ÐÍ
                                                            ¡¡¡¡4.3.1 Ä£Ðͽṹ
                                                            ¡¡¡¡4.3.2 dz²ãÌØÕ÷Ìáȡģ¿é
                                                            ¡¡¡¡4.3.3 Éî²ãÌØÕ÷Ìáȡģ¿é
                                                            ¡¡¡¡4.3.4 Êý¾ÝÈÚºÏÄ£¿é
                                                            ¡¡¡¡4.3.4 Ëðʧº¯Êý

                                                            ¡¡¡¡4.4 Öá³ÐÊ£ÓàÊÙÃüÔ¤²âÁ÷³Ì
                                                            ¡¡¡¡4.5 ʵÑéÓë½á¹û·ÖÎö
                                                            ¡¡¡¡4.5.1 ʵÑéÊý¾ÝÀ´Ô´
                                                            ¡¡¡¡4.5.2 ʵÑé½á¹û
                                                            ¡¡¡¡4.5.3 ½á¹û¶Ô±È·ÖÎö
                                                            ¡¡¡¡4.6 ±¾ÕÂС½á

                                                            ¡¡¡¡µÚ 5 Õ Öá³Ð¹ÊÕÏÔ¤¾¯ÏµÍ³µÄÉè¼ÆÓëʵÏÖ
                                                            ¡¡¡¡5.1 ÒýÑÔ
                                                            ¡¡¡¡5.2 ϵͳµÄ×ÜÌ广»®
                                                            ¡¡¡¡5.3 ϵͳÈíÓ²¼þÉè¼Æ
                                                            ¡¡¡¡5.3.1 Ó²¼þÉè¼Æ
                                                            ¡¡¡¡5.3.2 Èí¼þ³ÌÐòÉè¼Æ
                                                            ¡¡¡¡5.4 ±¾ÕÂС½á

                                                            µÚ6Õ ×ܽáÓëÕ¹Íû

                                                            ¡¡¡¡6.1 ¹¤×÷×ܽá

                                                            ¡¡¡¡±¾ÎĶÔÊý¿Ø»ú´²ÖкËÐIJ¿¼þ¹ö¶¯Öá³ÐµÄ¹ÊÕÏÔ¤¾¯¼¼Êõ½øÐÐÁËÑо¿£¬²¢Éè¼ÆÓëʵÏÖÁ˹ÊÕÏÔ¤¾¯ÏµÍ³¡£ÎªÁËÔö¼Ó¹ÊÕÏÔ¤¾¯ÏµÍ³µÄÖÇÄÜÐÔºÍÍ걸ÐÔ£¬±¾ÎÄ´Ó¹ö¶¯Öá³ÐÊ£ÓàÊÙÃüÔ¤²âÈëÊÖ£¬·ÖÎöÁË´«Í³»úÆ÷ѧϰºÍÉî¶ÈѧϰµÄÇø±ðºÍÓÅȱµã£¬Ìá³öÁ˶à³ß¶È¾í»ýÉñ¾­ÍøÂçÄ£ÐÍ£¬Í¨¹ý¸ÃÍøÂçÄ£ÐÍ¿É׼ȷԤ²âÖá³ÐÊ£ÓàÊÙÃü£¬¸ù¾ÝÊÙÃü½á¹ûÌá³ö¿ÉÐеÄÔ¤¾¯ºÍά»¤´ëÊ©£¬Í¬Ê±·ÖÎöÁ˶àÖÖÈíÓ²¼þ²Ù×÷·½Ê½£¬´î½¨Á˱ȽÏÊʺϸÃϵͳµÄÈí¼þƽ̨ºÍÓ²¼þÉèÊ©£¬Ê¹µÃ¹¤×÷ÈËÔ±²Ù×÷¸Ãϵͳ¸ü¼Ó·½±ã¿ì½Ý¡£ÆäÖоßÌ幤×÷ÈçÏ£º

                                                            ¡¡¡¡£¨1£© Ñо¿Á˹ö¶¯Öá³ÐÍË»¯µÄÔ­ÒòºÍÍË»¯µÄÀàÐÍ£¬½éÉÜÖá³ÐÕñ¶¯²úÉúµÄÔ­Òò£¬Í¨¹ý¶ÔÖá³ÐµÄÕñ¶¯ÆµÂʽøÐзÖÎö£¬µÃ³öÁËÕñ¶¯ÐźſÉÓÃÓÚÔ¤²âÊÙÃüµÄ½áÂÛ¡£¶ÔÖá³ÐµÄÊ£ÓàÊÙÃü½øÐнéÉÜ£¬¶¨Òå±¾ÎÄÖÐÊ£ÓàÊÙÃüµÄ¸ÅÄî¡£

                                                            ¡¡¡¡£¨2£© Ñо¿ÁË´«Í³¾í»ýÉñ¾­ÍøÂçµÄÓÅÊÆ£¬½éÉܸÃÍøÂçµÄ¾ßÌåϸ½Ú£¬Ìá³öÁ˽µµÍ¹ýÄâºÏµÄһЩ¼¼Êõ¡£

                                                            ¡¡¡¡£¨3£© Õë¶Ô¹ö¶¯Öá³ÐÊ£ÓàÊÙÃüÄÑÔ¤²âµÄÇé¿ö£¬ÔÚ·ÖÎöÁËÖá³ÐԭʼÐźÅÌØÕ÷ÌáÈ¡À§ÄѵĻù´¡ÉÏ£¬Ìá³öÁ˽µÔë×Ô±àÂëÆ÷ÐźÅÔ¤´¦ÀíÒÔ¼°»ùÓÚ¶à³ß¶È¾í»ýÉñ¾­ÍøÂçµÄÖá³ÐÊ£ÓàÊÙÃüÔ¤²â·½Ê½£¬¾ßÌå½éÉÜÁ˶à³ß¶È¾í»ýÍøÂçÄ£Ð͵Ädz²ãÌØÕ÷Ìáȡģ¿é¡¢Éî²ãÌØÕ÷Ìáȡģ¿é¡¢Êý¾ÝÈÚºÏÄ£¿éÒÔ¼°¸üÓÐÓÅÊÆµÄÐÂÐÍËðʧº¯Êý£»×îºóͨ¹ýʵÑéÑéÖ¤Á˸ÃÄ£Ð͵ÄÓÅÔ½ÐÔ¡£

                                                            ¡¡¡¡£¨4£© Ñо¿ÁËÖá³Ð¹ÊÕÏÔ¤¾¯ÏµÍ³µÄ×ÜÌ广»®£¬°ÑÊ£ÓàÊÙÃüÔ¤²âºÍÔ¤¾¯¼¼Êõ½ôÃܵÄÁªÏµÔÚÒ»Æð£¬·ÖÎöÁ˸ÃϵͳµÄÓ²¼þ×ÊÔ´£¬½éÉÜÁË LIS3DSH ¼ÓËٶȼÆÒÔ¼°InfluxDB Êý¾Ý¿â£¬Í¨¹ýϵͳµ×²ãÈí¼þµÄ¶à³ß¶È¾í»ýÉñ¾­ÍøÂçÄ£ÐͶÔÖá³ÐÊ£ÓàÊÙÃü½øÐÐÔ¤²â£¬²¢Í¨¹ýǰ¶ËÒ³Ãæ½øÐÐÏÔʾ£¬¸ø³öºÏÊʵÄÔ¤¾¯´ëÊ©¡£

                                                            ¡¡¡¡6.2 Õ¹Íû

                                                            ¡¡¡¡Ëæ×Ź¤Òµ×Ô¶¯»¯Ë®Æ½²»¶ÏÌá¸ß£¬Êý¿Ø»ú´²ÔÚ¹¤×÷¹ý³ÌÖм«Ò×Ë𻵣¬¶øÖá³ÐÔÚ»ú´²ÉϵÄÓ¦Óù㷺£¬±£ÕÏÖá³Ð´¦ÓÚ½¡¿µ×´Ì¬Ê®·ÖÖØÒª¡£±¾ÎÄÕë¶ÔÉÏÊöÎÊÌ⣬ÖصãÑо¿Á˶à³ß¶È¾í»ýÉñ¾­ÍøÂçÄ£ÐÍÔÚÖá³ÐÊ£ÓàÊÙÃüÔ¤²âÖеÄÓ¦Óã¬Éè¼ÆÓëʵÏÖÁËÖá³Ð¹ÊÕÏÔ¤¾¯ÏµÍ³£¬µ«ÓÉÓÚ±¾ÈËĿǰʱ¼äºÍÈíÓ²¼þ×ÊÔ´µÄÏÞÖÆ£¬±¾ÎÄÉè¼Æµ½µÄһЩÄÚÈÝ»¹ÐèÒª¸Ä½øºÍ½øÒ»²½µÄÑо¿£º

                                                            ¡¡¡¡£¨1£© ¶ÔÖá³ÐԭʼÕñ¶¯ÐźŽøÐÐÐźŴ¦Àí£¬ÐèÒª½øÒ»²½Ñо¿¸ü¼Ó·½±ã¡¢¿ÉÌáÈ¡¸ü¶àÓÐÓÃÐÅÏ¢µÄÔ¤´¦Àí·½Ê½¡£

                                                            ¡¡¡¡£¨2£© Ëæ×ÅÉñ¾­ÍøÂç¼¼ÊõµÄ²»¶Ï·¢Õ¹£¬ÔÚ±¾ÎÄÌá³öµÄ¶à³ß¶È¾í»ýÉñ¾­ÍøÂçÄ£Ð͵Ļù´¡ÉÏ£¬¿É½øÒ»²½µÄÑо¿ÐÂÐ͵ÄÉî¶ÈѧϰģÐÍ£¬¿ÉʹÓöàÖÖÍøÂçÄ£ÐÍÏàÈںϵķ½Ê½£¬Ìá¸ßÊ£ÓàÊÙÃüÔ¤²âµÄ¾«¶ÈÒÔ¼°Ä£Ð͵ij°ôÐÔ

                                                            £¨3£© ±¾ÎĵÄÔ¤´¦Àí·½Ê½ºÍÊÙÃüÔ¤²âÄ£ÐͶ¼ÊÇ»ùÓÚÉî¶ÈѧϰÀíÂÛÌá³öµÄ£¬¶øÕâÖÖÄ£ÐͶÔÊäÈëÊý¾ÝµÄ¹æÄ£±È½ÏÃô¸Ð£¬Òò´ËÓ¦¸Ã²É¼¯¸ü¶àµÄÖá³ÐÔËÐÐÐźÅ£¬À©³äÄ£ÐÍѵÁ·µÄÊý¾Ý¼¯£¬Ìá¸ßÄ£ÐÍÔ¤²âµÄ¾«¶È¡£

                                                            ¡¡¡¡£¨4£© ¹ÊÕÏÔ¤¾¯ÏµÍ³ÐèÒªÈí¼þºÍÓ²¼þµÄÖ§³Å£¬¿É½øÒ»²½Ìá¸ßϵͳµÄÓ²¼þ×ÊÔ´£¬Ê¹Óøü¼Ó·á¸»µÄ´«¸ÐÆ÷²É¼¯Öá³ÐÐźÅ£¬Ôö¼ÓÏÔ¿¨Ê¹Óà GPU À´Ìá¸ßÄ£Ð͵ÄÔËÐÐËÙ¶È£¬Ñ¡È¡ÐÔÄܸü¼Ó³äÅæµÄ·þÎñÆ÷¶Ô¸ÃϵͳÌṩ¸üºÃµÄÖ§³Ö¡£

                                                            ¡¡¡¡¶ÔÔ¤¾¯ÏµÍ³¹¦ÄܽøÐÐÀ©Õ¹£¬Ôö¼Ó¹ÊÕÏÕï¶Ï¹¦ÄÜ£¬Ðγɸü¼ÓÍ걸µÄÖá³Ð½¡¿µ¹ÜÀíϵͳ¡£

                                                            ¡¡¡¡²Î¿¼ÎÄÏ×
                                                            ¡¡¡¡Íõº£Áú¡£ Êý¿Ø»ú´²¹ö¶¯Öá³Ð½¡¿µ×´¿ö¼à²âϵͳÉè¼ÆÓëʵÏÖ[D].Öйú¿ÆÑ§Ôº´óѧ£¨Öйú¿ÆÑ§Ôº
                                                            ¡¡¡¡ÉòÑô¼ÆËã¼¼ÊõÑо¿Ëù£©£¬2019.
                                                            ¡¡¡¡Áº¾ºÖ®¡£ ¹ö¶¯Öá³ÐµÄ¹ÊÕϼà²âÓë״̬¹ÜÀíϵͳÑо¿[D].¹þ¶û±õ¹¤Òµ´óѧ£¬2019.
                                                            ¡¡¡¡Òó±ó¡£ »ùÓÚ¼¯³ÉÉù±íÃæ²¨´«¸ÐÆ÷µÄ¹ö¶¯Öá³Ð״̬¼à²âϵͳÑÐÖÆ[D].¹þ¶û±õ¹¤Òµ´óѧ£¬2019.
                                                            ¡¡¡¡À×Ñǹú£¬º«ÌìÓÍõ±ë£¬µÈ¡£ XJTU-SY ¹ö¶¯Öá³Ð¼ÓËÙÊÙÃüÊÔÑéÊý¾Ý¼¯½â¶Á[J].»úе¹¤³Ìѧ±¨£¬2019,55£¨16£©£º1-6.
                                                            ¡¡¡¡Íõºã£¬Âíº£²¨£¬Ð캣À裬µÈ¡£»ùÓÚ K-S ¼ìÑéºÍ¶¯Ì¬»ÒɫģÐ͵ĻúеÉ豸ʣÓàÊÙÃüÔ¤²â·½·¨[J].
                                                            ¡¡¡¡ÒÇ±í¼¼ÊõÓë´«¸ÐÆ÷£¬2015£¨01£©£º97-100.
                                                            ¡¡¡¡ÕÅÎĺÀ£¬Ê©Õ¹¡£ »ùÓÚŷʽ¾àÀëÓë»ÒɫԤ²âÄ£Ð͵Ļú´²Ö÷ÖáÊ£ÓàÊÙÃüÑо¿[J].ÖÆÔìÒµ×Ô¶¯»¯£¬2019,41£¨03£©£º93-96.
                                                            ¡¡¡¡Áõ²¨£¬ÄþÜ·£¬Áõ²Åѧ£¬µÈ¡£ »ùÓÚÁ¬ÐøÐÍ HMM ºÍ PSO-SVM µÄ¹ö¶¯Öá³ÐÊ£ÓàÊÙÃüÔ¤²â[J].¼ÆËã
                                                            ¡¡¡¡»úÓ¦Óã¬2019,39£¨S1£©£º31-35.
                                                            ¡¡¡¡À×Ñǹú£¬Ñî±ò£¬¶ÅÕ×¾û£¬µÈ¡£´óÊý¾ÝÏ»úеװ±¸¹ÊÕϵÄÉî¶ÈÇ¨ÒÆÕï¶Ï·½·¨[J].»úе¹¤³Ìѧ±¨£¬2019,55£¨07£©£º1-8.
                                                            ¡¡¡¡Âíº£Áú¡£ »ùÓÚÖ÷ÔªÌØÕ÷ÈÚºÏºÍ SVM µÄÖá³ÐÊ£ÓàÊÙÃüÔ¤²â[J].¹¤¿ó×Ô¶¯»¯£¬2019,45£¨08£©£º74-78.
                                                            ¡¡¡¡ÇñÏþ÷¡£ ¹ö¶¯Öá³ÐµÄ¹ÊÕÏÕï¶ÏÓëÊ£ÓàÊÙÃüÔ¤²â·½·¨Ñо¿[D].ɽ¶«Àí¹¤´óѧ£¬2019.
                                                            ¡¡¡¡ÁõСÓ¡£ »ùÓÚÉî¶ÈѧϰµÄ»úеÉ豸ÍË»¯×´Ì¬½¨Ä£¼°Ê£ÓàÊÙÃüÔ¤²âÑо¿[D].¹þ¶û±õ¹¤Òµ´óѧ£¬2018.
                                                            ¡¡¡¡ÖÜÔ£»ª¡£ ¹ö¶¯Öá³ÐµÄÐÔÄÜÍË»¯ÆÀ¹ÀÓëÊ£ÓàʹÓÃÊÙÃüÔ¤²â·½·¨µÄÑо¿[D].»ªÄÏÀí¹¤´óѧ£¬2018.
                                                            ¡¡¡¡ÈÎÀû¾ê¡£ ¹ö¶¯Öá³ÐÐÔÄÜÍË»¯ÆÀ¹ÀÓëÊ£ÓàÊÙÃüÔ¤²â[D].ɽ¶«´óѧ£¬2019.
                                                            ¡¡¡¡Ñîɺ¡£ »ùÓÚÉñ¾­ÍøÂçºÍ Clark ±ä»»µÄµç»ú¹ÊÕÏÕï¶ÏµÄÑо¿[D].ÖйúʯÓÍ´óѧ£¨»ª¶«£©£¬2013.
                                                            ¡¡¡¡Áõ¶÷Áú¡£ »ùÓÚ WPHM Ä£Ð͵Ĺö¶¯Öá³ÐÊÙÃüÔ¤²â·½·¨Ñо¿[D].´óÁ¬Àí¹¤´óѧ£¬2014.
                                                            ¡¡¡¡½ªæ©¡£ µç»úÖÇÄÜÖá³ÐÔÚÏß¼à²âϵͳ¼°¹ÊÕÏÔ¤¾¯¼¼ÊõÑо¿[D].¹þ¶û±õÀí¹¤´óѧ£¬2019.
                                                            ¡¡¡¡ËÕ¹Ú»ª¡£ »ùÓÚÉî¶ÈѧϰµÄ¹ö¶¯Öá³ÐÖÇÄܹÊÕÏÕï¶Ï·½·¨Ñо¿[D].Ñàɽ´óѧ£¬2019.
                                                            ¡¡¡¡Ê¯»Û¡£ »úеϵͳµÄÊ£ÓàÊÙÃüÔ¤²â¼°Ô¤·ÀÐÔάÐÞ¾ö²ßÑо¿[D].̫ԭ¿Æ¼¼´óѧ£¬2015.
                                                            ¡¡¡¡ÀîÐÂÒ¶£¬ÁúÉ÷Åô£¬Öìæº¡£ »ùÓÚÉî¶ÈÉñ¾­ÍøÂçµÄÉÙÑù±¾Ñ§Ï°×ÛÊö[J].¼ÆËã»úÓ¦ÓÃÑо¿£¬2020,1£¨8£©£º30-100.
                                                            ¡¡¡¡³Âѧ¾ü£¬ÑîÓÀÃ÷¡£ »ùÓÚ¾­ÑéС²¨±ä»»µÄÕñ¶¯ÐźŷÖÎö[J].Ì«ÑôÄÜѧ±¨£¬2017,38£¨02£©£º339-346.
                                                            ¡¡¡¡ÖìÏþ½à¡£ »ùÓÚÏ¡ÊèÐԷǸº¾ØÕó·Ö½âµÄ¹ö¶¯Öá³Ð¸´ºÏ¹ÊÕÏÕï¶Ï[J].Öйú¹¤³Ì»úеѧ±¨£¬2018,16£¨06£©£º553-558.
                                                            ¡¡¡¡ÀîÐÄÒ»£¬Ð»Ö¾½­£¬Â޾÷É¡£ ¼Ó´°²åÖµ¿ìËÙ¸µÀïÒ¶±ä»»ÔÚ¹ö¶¯Öá³Ð¹ÊÕÏÕï¶ÏÖеÄÓ¦ÓÃ[J].Öйú»ú
                                                            ¡¡¡¡Ðµ¹¤³Ì£¬2018,29£¨10£©£º1166-1172.
                                                            ¡¡¡¡ÀîÉÙÅô¡£ ½áºÏ CNN ºÍ LSTM µÄ¹ö¶¯Öá³ÐÊ£ÓàʹÓÃÊÙÃüÔ¤²â·½·¨Ñо¿[D].¹þ¶û±õÀí¹¤´óѧ£¬2019.
                                                            ¡¡¡¡ÕÅöΡ£ »úеάÐÞ¹ý³ÌÖÐÖá³ÐάÐÞ·½Ê½Ì½Îö[J].ÖйúÉ豸¹¤³Ì£¬2019,£¨08£©£º48-49.
                                                            ¡¡¡¡ÖìÀò£¬Íõκ¡£ ÐÂÐÍ MEMS ÈýÖá¼ÓËÙ¶È¼Æ LIS3LV02DL Ô­ÀíÓëÓ¦ÓÃ[J].¶«±±ÁÖÒµ´óѧѧ±¨£¬2006,£¨04£©£º103-105.
                                                            ¡¡¡¡ÏÄè¤Âº¡£ È˹¤Éñ¾­ÍøÂçµÄ·¢Õ¹×ÛÊö[J].µçÄÔ֪ʶÓë¼¼Êõ£¬2019,15£¨20£©£º227-229.
                                                            ¡¡¡¡ºÎ±ë¡£ »ùÓÚÕñ¶¯ÐźŵĹö¶¯Öá³ÐÔçÆÚ¹ÊÕÏÕï¶Ï·½·¨Ñо¿[D].Î÷ÄϽ»Í¨´óѧ£¬2019.
                                                            ¡¡¡¡Guangxian Ni, Jinhai Chen, Heng Wang. Degradation assessment of rolling bearing towards safety based on random matrix single ring machine learning[J]. Safety Science, 2019, 118.
                                                            ¡¡¡¡Kalchbrenner N, Grefenstette E, Blunsom P. A Convolutional Neural Network for Modelling Sentences[J]. Eprint Arxiv, 2014, 1.
                                                            ¡¡¡¡Ji-Yuan Wang, Eung-Joo Lee. Low Resolution Rate Face Recognition Based on Multi-scale CNN. 2018, 21£¨12£©£º 1467-1472.
                                                            ¡¡¡¡Xin Lai, Le Zhou, Zeyu Fu, et al. Enhanced pooling method for convolutional neural networks based on optimal search theory. 2019, 13£¨12£©£º 2152-2161.
                                                            ¡¡¡¡Danchen Zhu, Yongxiang Zhang, Qunwei Zhu. Fault feature extraction for rolling element bearings based on multi-scale morphological filter and frequency-weighted energy operator. 2018, 20£¨8£©£º2892-2907.
                                                            ¡¡¡¡Fan Xu,Zhelin Huang,Fangfang Yang,Dong Wang,Kwok Leung Tsui. Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion[J]. Applied Soft Computing Journal, 2020, 89.He K, Zhang X, Ren S,et al. Deep Residual Learning for Image Recognition[J]. 2015: 770-778.
                                                            ¡¡¡¡Soualhi A, Medjaher K, Zerouni N. Bearing health monitoring based on Hibert-Huuang transform,support vector machine,and regression. IEEE TransInstruum Mears 2015; 64£¨1£©£º 52-62

                                                            Ö л

                                                            ¡¡¡¡Ê±¹âÜóÜÛ£¬ËêÔÂôæõÑ£¬ÈýÄêµÄÑо¿ÉúÉú»î¼´½«½áÊø¡£»Ø¹ËÕâÈýÄêÒÔÀ´µÄµãµãµÎµÎ£¬Óв»Éá¡¢Óл³Äî¡¢ÓÐϲÔá¢Óб¯ÉË£¬¸÷ÖÖÇé¸Ð½»Ö¯ÔÚÒ»Æð£¬ÓÐÈçÒ»Ö¡Ö¡µçÓ°»­Ãæ°ã¶¨¸ñÔÚÎÒµÄÄÔº£ÖС£ÈýÄêÀ´ÉÙÁËÐí¶à±¾¿ÆÊ±µÄã¶®ÎÞÖª£¬¶àÁËһЩÀú¾­ËêÔÂÏ´ÀñºóµÄ³ÉÊìÓëÎÈÖØ¡£Ò²¸ü¼ÓÃ÷°×ÁËÔÚÕâÂþÂþµÄ¿ÆÑеÀ·ÉÏ£¬ÐèÒªµÄÊdzýÈ´ÄêÉÙʱµÄ¸¡Ô꣬¾²ÏÂÐÄÀ´£¬µÍÍ·¸ûÔÅ£¬²ÅÄÜÔÚ¿ÆÑеÀ·ÉÏ×ߵĸüÎÈ¡¢¸üÔ¶¡£

                                                            ¡¡¡¡ÔÚ´ËÎÒ×îÏȸÐлµÄÊÇÎҵĵ¼Ê¦ËïάÌÃÀÏʦ£¬¸ÐлËïÀÏʦÔÚÕâÈýÄêÀ´Ëù¸øÓèÎҵĹػ³ºÍÖ¸µ¼¡£ËïÀÏʦԨ²©µÄѧʶ¡¢ÑϽ÷ϸÖµĿÆÑÐ̬¶ÈÒÔ¼°Æ½Ò×½üÈ˵Ä×÷·ç¶¼ÈÃÎÒÊÜÒæ·Ëdz£¬Ê¹ÎÒÔÚѧÊõ·½Ãæ²»¶ÏÇóË÷£¬ÈÕÒæ½ø²½¡£Í¬Ê±£¬ÎÒÒ²Òª¸Ðлº«ÎÀ¹âÀÏʦ£¬º«ÀÏʦ²»¹ÜÊÇÔÚѧϰÉÏ»¹ÊÇÔÚÉú»îÉ϶¼¸øÁËÎÒ¼«´óµÄ°ïÖúºÍÓ°Ïì¡£ÔÚÕâÈýÄêÀ´£¬´ÓÑ¡Ôñ¿ÎÌâµ½ÂÛÎÄ׫дÒÔ¼°ÂÛÎÄÆÀÔÄÕâÂþ³¤µÄ¹ý³ÌÖж¼°üº¬ÁËËûÃÇÎÞÊýµÄÐÄѪ¡£¸Ðлº«ÀÏʦºÍËïÀÏʦ£¬½÷ÔÚ´Ë×£ÀÏʦÃÇ¿ÆÑÐ˳Àû£¬ÉíÌ彡¿µ£¬ÌÒÀîÂúÌìÏ¡£

                                                            ¡¡¡¡Æä´Î»¹Òª¸ÐлÑо¿Éú²¿µÄ¶¡ÀÏʦ¡¢ÍõÀÏʦÒÔ¼°ÆäËûËùÓÐÔø¸øÓè¹ýÎÒ°ïÖúµÄÀÏʦ¡£ÔÚÄãÃǵİïÖúÏ£¬²ÅʹÎÒ˳ÀûµÄÍê³ÉÁËÕû¸öѧҵ£»ÔÚÄãÃǵÄÅã°éÏ£¬²ÅʹÎҳɳ¤Îª¸üºÃµÄÈË¡£

                                                            ¡¡¡¡µ±È»£¬»¹Òª¸ÐлʵÑéÊҵĸÊʦÐÖ¡¢ÍõʦÐÖÃÇÒÔ¼°ÎÒÉí±ßµÄͬѧÅóÓÑÃÇ£¬ÈýÄêÒÔÀ´ÓëÄãÃÇÏà´¦µÄµãµãµÎµÎ£¬»ØÏëÆðÀ´£¬·ÂÈô»¹ÊÇ×òÌì¡£¸ÐлÄãÃÇÔÚÎÒ×îÎÞÖúµÄʱºò¸øÎÒ¼ÓÓÍ´òÆø£¬ÔÚÎÒ×îÃÔãµÄʱºò°ïÎÒ²¦¿ªÃÔÎí£¬ÔÚÎÒ¶ÔδÀ´×îã¿ã½µÄʱºò¸øÓèÎÒ×îÕæÖ¿µÄ×£¸£¡£ÓÚÎÒ¶øÑÔ£¬ÄãÃÇËÆÐÖ³¤£¬¸üÊÇÖ¿ÓÑ£¬ÊÇÎÒÕâÈýÄêÀ´×¹óµÄ²Æ¸»¡£ÍòÓïǧÑÔ£¬×ֲܵ»¹ýÕâÈýÄêµÄÅã°é¡£ÔÚÕâ¼´½«Àë±ðÖ®¼Ê£¬ÎÒ×£ÄãÃÇһ··±»¨Ëƽõ£¬Æ½°²Ï²ÀÖ¡£

                                                            ¡¡¡¡ÁíÍ⣬ÎÒÒª¸ÐлÎҵĸ¸Ä¸£¬¸ÐлÄãÃÇ´Óδȱϯ¹ýÎҳɳ¤µÀ·ÖÐËùµÖ´ïµÄÿһ´¦Ð¡Ð¡Öյ㣬ÔÚÕâ¶Ì¶ÌµÄ¶þÊ®¼¸Äê·;ÖУ¬ÎÞÂÛÇçÓ꣬ÄãÃÇÒ»Ö±¶¼ÔÚ£¬ÄãÃÇÊÇÎÒ×î¼áÇ¿µÄºó¶ÜºÍ×îÓÐÁ¦µÄÖ§³Å¡£ÄãÃÇÐÁ¿àÁË£¡¸ÐлÄãÃÇËù¸øÓèÎÒµÄÈ«²¿µÄÎÞ˽µÄ°®£¡

                                                            ¡¡¡¡×îºó£¬¸Ðл¸÷λÆÀÉóÀÏʦ¶ÔÎÒÂÛÎĵÄÈÏÕæÉóÔIJ¢Ìá³ö±¦¹óµÄÒâ¼û£¬ÈÃÎÒ¿ÉÒÔÕýÊÓ×Ô¼ºµÄ²»×ã²¢µÃÒÔ¸ÄÕý¡£Ï£Íû×Ô¼ºÔÚÒÔºóµÄ¹¤×÷ºÍÉú»îÖÐÄܹ»¼áÊØ³õÐÄ£¬½Å̤ʵµØ£¬íÆíÂǰÐУ¬½¥Èë¼Ñ¾³¡£

                                                            £¨ÈçÄúÐèÒª²é¿´±¾Æª±ÏÒµÉè¼ÆÈ«ÎÄ£¬ÇëÄúÁªÏµ¿Í·þË÷È¡£©

                                                            Ïà¹ØÄÚÈÝ
                                                            Ïà¹Ø±êÇ©£ºJava±ÏÒµÉè¼Æ
                                                            ºÃÓÅÂÛÎ͍֯ÖÐÐÄÖ÷ҪΪÄúÌṩ´ú×ö±ÏÒµÉè¼Æ¼°¸÷רҵ±ÏÒµÂÛÎÄд×÷¸¨µ¼·þÎñ¡£ ÍøÕ¾µØÍ¼
                                                            ËùÓÐÂÛÎÄ¡¢×ÊÁϾùÔ´ÓÚÍøÉϵĹ²Ïí×ÊÔ´ÒÔ¼°Ò»Ð©ÆÚ¿¯ÔÓÖ¾£¬ËùÓÐÂÛÎĽöÃâ·Ñ¹©ÍøÓѼäÏ໥ѧϰ½»Á÷Ö®Óã¬ÇëÌØ±ð×¢ÒâÎð×öÆäËû·Ç·¨ÓÃ;¡£
                                                            ÈçÓÐÇÖ·¸ÄúµÄ°æÈ¨»òÆäËûÓÐËðÄúÀûÒæµÄÐÐΪ£¬ÇëÁªÏµÖ¸³ö£¬ÂÛÎ͍֯ÖÐÐÄ»áÁ¢¼´½øÐиÄÕý»òɾ³ýÓйØÄÚÈÝ!
                                                            2022爱情岛永久论坛亚洲品质在线观看在线视频,爱情岛永久论坛亚洲品质视频在线播放,啊用力快点我高潮了视频 爱情岛论坛亚洲国产线路一免费视频等最新最全的电影。
                                                            <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Ö©Öë´Ê>| <Îı¾Á´> <Îı¾Á´> <Îı¾Á´> <Îı¾Á´> <Îı¾Á´> <Îı¾Á´>